In this tutorial we will demonstrate how to map a random point cloud with pore pressure values onto the grid points of a FLAC3D model using Python.
As well as flow through joints, 3DEC 5.2 is capable of simulating fluid flow through the blocks or the matrix (i.e., between the joints). It is assumed that the blocks represent a saturated, permeable solid, such as soil or fractured rock mass.
In this tutorial we will explore all the visualization components that MINEDW has to offer, and all the options available to the user to visualize the model's components and properties.
Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure.
The realism of Discrete Fracture Network (DFN) models relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. In this study, we introduce correlations between fractures by enhancing the genetic model (UFM) of Davy et al. [1] based on simplified concepts of nucleation, growth and arrest with hierarchical rules.
We derive the relationships that link the general elastic properties of rock masses to the geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.
We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.