This training is an introduction to continuous modeling with FLAC2D and FLAC3D. At the end of the course, participants will master the graphical interface, documentation and the main modeling steps. Concepts are illustrated using a tunnel excavation example, from building the model geometry to results analysis. This introductory course provides the foundation for more advanced use of the software, which can be covered in more specific training modules.
Live Online Introductory Training Course.
November 14-18, 2022.
This tutorial will show how to create and manipulate zone plot items for showing model attributes and results.
This tutorial will guide you through how to create a simple material using the linear parallel bond-model.
This tutorial will show how to paint zone data onto an imported geometric surface in FLAC3D.
In this study, we address the issue of using graphs to predict flow as a fast and relevant substitute to classical DFNs. We consider two types of graphs, whether the nodes represent the fractures or the intersections between fractures.
We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.
As part of the Hybrid Stress Blast Model (HSBM) project, Itasca has developed software to model the rock blasting process.