This tutorial will show how to create and manipulate plot range elements in FLAC3D. Each plot-item in a plot may have one or more range elements that shows the portion which lies within the defined range, while removing from view the portion of the plot-item that lies outside it. Plot-item ranges may also be copied and applied to other plot-items.
This video demonstrates using a library set of Building Blocks as a starting point for creating a new model. In this example, cylindrical blocks are snapped together to represent a tunnel and intersected with other blocks representing a nearby wall.
This tutorial illustrates how to generate movies from FLAC3D plots. It is also applicable for 3DEC, PFC, and UDEC.
We derive the relationships that link the general elastic properties of rock masses to the geometrical properties of fracture networks, with a special emphasis to the case of frictional crack surfaces.
We extend the well-known elastic solutions for free-slipping cracks to fractures whose plane resistance is defined by an elastic fracture (shear) stiffness ks and a stick-slip Coulomb threshold.
Study stress situation for potential continued mining towards greater depths; stress calibration against stress measurements using numerical modeling; and use of calibrated model to study stresses at existing infrastructure, study stresses at potential future haulage level locations, and as input to local models.
This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.