A pressure pulse is being applied to the tunnel boundary with a frequency of 4 Hz over tens of milliseconds. Quiet (i.e., viscous) boundaries have been applied to all but the top of the model, which remains a free surface.
In this tutorial we will take a look at the different boundary conditions available to the user, and we will go over some examples of different scenarios in which they would be used.
As well as flow through joints, 3DEC 5.2 is capable of simulating fluid flow through the blocks or the matrix (i.e., between the joints). It is assumed that the blocks represent a saturated, permeable solid, such as soil or fractured rock mass.
Typical sedimentary sequences overlying coal seams consist of interbedded sandstones, siltstones, shales, and rider coal seams.
This work presents a hybrid modeling approach to efficiently estimate and optimize rock movement during blasting. A small-scale continuum model simulates early-stage, near-field blasting physics and generates synthetic data to train a machine learning (ML) model. Key parameters such as expanded hole diameter, burden velocity, and gas pressure are obtained through the ML model, which then inform a discontinuum model to predict far-field muckpile formation. The approach captures essential blast physics while significantly accelerating blast design optimization.
A geochemical model was developed to predict future water quality of the Cove pit lake in support of site closure and regulatory permitting.